

Long Lived Particle Searches Experimental Considerations

Christopher S. Hill The Ohio State University

A little (biased) context

- I was asked to give this talk (I assume) because I have been doing LLP searches for the better part of 2 decades
 - Long before the recent surge in interest
 - Why?
 - It has long been my belief one of the best ways to make a discovery is to look where no one has before
 - For my LLP searches this has often meant developing new triggers, reconstruction, analysis ideas, and detectors/experiments
 - In this way over the years I've developed a suite of techniques that cover the entire relevant lifetime range
 - Combined with the work of others, and the increasing popularity of these analyses, the LLP coverage at LHC is now pretty good (see below)

Overview of CMS long-lived particle searches

ATLAS & CMS current LLP programs

- Utilize different sub-detectors, with different experimental challenges to cover full lifetime range:
 - Tracker
 - Find displaced tracks, vertices
 - Find tracks that "disappear" (or kink)
 - Use low/high dE/dx information to indicate passage of BSM particle
 - ID displaced photons via conversions
 - Calorimeters
 - Find displaced jets
 - Anomalous jets as indication of new force (too few tracks and/or "emerging")
 - Stopped particles
 - Muon systems
 - Highly displaced vertices
 - Stopped particles

N.B. Due to exponential nature of decays combined with finite resolution, short lifetime limit of tracker based analyses **overlap** with coverage from prompt searches (to some extent)

Coverage will be good at HL-LHC too

- Due to increased interest, and generally more capable detectors, overall I expect this coverage will be as good or better for the HL-LHC
 - But while extending reach by repeating existing LLP analyses in the HL-LHC era should certainly be done
 - (and there will be a lot of non-trivial work to adapt these to the challenging new environment)
 - Some work already done for ESG +
 TDRs (see examples at right) but
 Snowmass probably should play a
 role in also studying this
 - However, for the most part this is not looking somewhere no one has before (in the same way that has motivated me in past)

- Examples from CMS:
 - FTR-18-002: Dark photons to displaced μ
 - https://cds.cern.ch/record/2644533
 - FTR-18-018: L1 track jet trigger for displaced jets
 - https://cds.cern.ch/record/2647987
 - MTD TDR (TDR-19-002)
 - Delayed photons (Section 5.4.2)
 - HSCPs (Section 5.4.3)
 - CMS Muon TDR (TDR-17-003)
 - HSCP with RPC trigger (Section 8.2.2)
 - Tracker TDR (TDR-17-001)
 - HSCPs (Section 6.5.5)

LLP searches are inherently experimental

- While it is always inspiring to hear new theoretical ideas that invoke LLPs (as in the previous talk), what LLP searches can actually be done boils down to experimental capability (+ time needed to implement)
 - There is a balance here, something might be well motivated theoretically but so experimentally difficult that it will never actually happen
 - I can give you many such examples
 - While Snowmass is the perfect time to explore ambitious ideas, we should be cognizant of the fact that Snowmass studies will not necessarily represent reality
- The LHC experiments were (for good reasons) not designed for LLPs
 - This remains true for HL-LHC
 - However, both ATLAS/CMS will have new experimental capabilities
 - There will even be some new LHC experiments
 - IMHO Snowmass LLP studies should focus on how to exploit these to look where we could not before

e.g. rewriting global tracking to find kind **kinked tracks** anywhere is **ill advised** ... they are just disappearing tracks!

(S/B is very high so can easily find the kinked track in such an event, possibly even by eye)

Effect of HL-LHC Tracker Upgrades on LLP programs

- Tracker based signatures will definitely be impacted
 - Both CMS/ATLAS new trackers with some degree of new triggering capability
 - Triggering is often a limitation of reach of searches with tracker based LLP signatures
 - CMS will have triggers seeded at L1 with a track
 - No need for ISR triggers for neutral final states (e.g. disappearing tracks)
 - Direct triggering on displaced vertices
 - Potential game changer that should be studied for Snowmass
 - One caveat is tracklets formed in OT, so will not help with shortest lifetimes ... maybe "appearing tracks"?
 - AFAIK ATLAS baseline does have triggering at L1, but upgrade with regional tracking at L1 under consideration so could also benefit from studies
 - Not all impacts are positive
 - CMS will have ~binary readout so less dE/dx discriminant for HSCPs less effective
 - Fairly well-studied already

Some good work already done here by Y. Gershtein, S. Knapen arXiv:1907.00007

Effect of HL-LHC Timing Upgrades on LLP programs

- *Both CMS/ATLAS* will have timing detectors for the first time for HL-LHC
 - Unprecedented timing precision of ~30 ps
 - Timing is already employed in LLP searches (HSCP, displaced photons, displaced jets) so will obviously help
 - Also important to preserve viability of existing program in presence of PU (e.g. searches relying on ISR triggers)
 - Enables LLP mass reconstruction with discriminating precision
 - I personally do not think it is too late to make case for timing in the trigger (at L1 in CMS)
 - Upgrades are always late, and you can always upgrade an upgrade
 - Yes, its not in the baseline so what?
 - Potential impact here is hard to overstate
 - Snowmass perfect forum to move the ball along here

THE OHIO STATE UNIVERSITY

Effect of HL-LHC Calorimeter Upgrades on LLP

- Here, I focus on CMS where the entire HCAL will be replaced with a "high granularity" Si imaging calorimeter (HGCAL)
 - First of its kind, will provide more information about hadronic showers than ever before
 - Tracking, calorimetry, timing, all in one!
 - Large, expensive, project focus to date has (correctly) been on securing funding, engineering
 - HL-LHC potential for LLP not well explored (AFAIK, save some nice work by theory colleagues, see right)
 - Opportunity again for Snowmass to make impact
 - How can use all this information to search for LLP?
 - Find displaced vertex inside HGCAL (using tracking)?
 - Reconstruct mass of decays to neutrals inside HCAL (using timing)?
 - Non-SM jets using multiplicity, dE/dx, shower 3D shapes
 - Very exotic stuff (e.g. lepton jets monopoles, SUEP, ...)
- I really think, at least for CMS (ATLAS is already doing some of these things) there is a need for good ideas, followed by good studies here

The role of LHCb in LLP searches

- I confess to not having thought much about this topic, but include it here for completeness
 - Because B's are LLPs, well-suited for (low mass) exotic LLP searches
 - Current program includes an LLP search component (e.g. dark photons)
- For LHCb, HL era starts soon (Run 3)
 - Plan is to use "Turbo paradigm"
 - Do physics analysis on trigger output directly (30 MHz)

Opportunity* for Snowmass studies on how to exploit this capability for LLPs, also overlap with CMS/ATLAS programs

*not much time before Run 3 ...

- Core programme: 1- and 2-track selections
- Cut [hard] on one or more of $p_{\rm T}$, displacement, e/ μ ID, vertex quantities
- VELO geometry restricts LLP vertices to $\mathcal{O}(1\,\mathrm{cm})$ radial and $\mathcal{O}(10\,\mathrm{cm})$ longitudinal displacement from beam spot

New LHC Experiments

- There will also be (at least one) new LHC experiments during the HL-LHC era (e.g)
 - FASER (downstream of ATLAS)
 - Funded, under construction
 - milliQan (off CMS beam line)
 - MATHUSLA (on surface above CMS)
- These experiments "pick up" the LHC LLP search program beyond the radii of ATLAS/ CMS
 - · Remember, lifetimes are exponentially distributed
 - Just like prompt searches overlap with LLP searches at the short lifetime, the ATLAS/CMS LLP programs overlap with these new experiments
 - Have been looked at some by the new exp. proponents
 - But, in some/all cases these experiments could be used to trigger ATLAS/CMS
 - This has not been studied nearly enough IMHO and is a good candidate for Snowmass

Overlap with DM (Snowmass EF10)? CF? IF?

- There is an obvious synergy between LLPs at LHC and dark matter candidates and/or dark sectors
 - What makes these "dark" is some kind of suppression of interaction with SM
 - If you produce DM from SM collisions at LHC, same suppression of decays back to SM result in long lifetimes
- Despite being on the APS/DPF committee that helped to set up this Snowmass, I am not really sure how to handle such overlaps
 - But clearly work on LLPs EF9 should be made aware/ available to EF10 somehow
 - From EF10 side, I think C. Daglioni is the point of contact?
 - There is also a similar (but maybe worse) issue with the overlap with the cosmic and intensity frontiers
- I have no real suggestions here, just raising the point for possible discussion

Connection between the relic abundance with the parent particle lifetime:

$$c\tau \approx 4.5 \text{ m} \, \xi g_F \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \text{keV}}\right) \left(\frac{200 \text{GeV}}{m_F}\right)^2 \left(\frac{102}{g_*(m_F/3)}\right)^{3/2} \left[\frac{\int_{m_F/T_0}^{m_F/T_0} dx \ x^3 K_1(x)}{3\pi/2}\right]$$

Can constrain cosmologically relevant parameter space.

Summary

- The LHC experimental LLP program has grown in the last few years
 - Many more "ideas" than published papers, however.
 - This is because good LLP searches are hard (due to often unique experimental challenges)
 - In my view the best ones expand the capabilities of our detectors in ways they weren't designed to work (but within the constraint of reasonable feasibility)
- The significant new information that the upgraded HL-LHC detectors will provide should be a great source of inspiration for LLP hunters
 - Continue pushing the boundaries of LLP searches
 - Snowmass is a unique opportunity to explore ideas that are beyond-the-baseline and for which there might not be bandwidth to pursue under official ATLAS/CMS/US projects
 - No P6 task entitled "come up with good idea to revolutionize LLP searches in the next decade"
 - Especially important to use this time to try to fully exploit new trigger ideas (using L1 tracks, MTDs, or auxiliary experiments)
 - BTW, I'm happy to work with people on any of the above (esp. the last one)

That's my 2 cents. I hope I left time for discussion of next steps ...

Additional Material

ATLAS LLP Summary Plot (cf. CMS slide 2)

